Evaluating Seepage of Dam Body Using RBF and GFF Models of Artificial Neural Network
نویسندگان
چکیده مقاله:
Dams have been always considered as the important infrastructures and their critical values are counted. Hence, evaluation and avoidance of dams’ destruction have a specific importance. Seepage occurrence in dams is an inevitable phenomenon. Despite all the progress in geotechnical engineering, up to now, seepage problem is the main conflict which occurs in dams. This study tried to estimate seepage of the embankment of "Boukan Shahid Kazemi’s dam” using RBF and GFF models of artificial neural network. To achieve this goal, the piezometric data set including 864 data were used. 70 percent of current data was used for training the network and 10 percent for calibration of two models. So 20% remained data was used for testing the network. Using suitable and applicable statistical parameters indicated that the RBF model with Levenberg Marquardt training and 4 hidden layers has high potential in estimating seepage, also the correlation coefficient for this model is 0.81 and the root mean square error was obtained 33.12%.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملAssessment of Artificial Neural Network Models and Maximum Entropy in Zoning of Gully Erosion Sensitivity of Golestan Dam Basin
Zoning of gully erosion susceptibility and determining the factors controlling gully erosion is very important and vital. The aim of this study was to investigate the spatial distribution of gully erosion using two models of ANN and MaxEnt and to determine the factors affecting this type of erosion in Golestan Dam basin. Therefore, 14 factors in the form of three divisions, including topographi...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 2
صفحات 1- 18
تاریخ انتشار 2019-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023